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Republic of China
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The modified forward–backward linear predictor~MFBLP! methods with higher-order statistics,
viz., the second-order statistics and the fourth-order cumulants, together with the broadband array
structure are developed in this paper for bearing estimation. Here, the desired source signals of
interest are narrow band and the additive Gaussian noise sources in the related sensors are assumed
to be spatially correlated or uncorrelated with each other and white/colored processes in the
temporal domain. In this paper, the MFBLP method with second-order statistics for bearing
estimation will be emphasized. Moreover, to extract the principal eigenvalues of presented MFBLP
methods a new search algorithm is also proposed. An analytical study of the MFBLP method with
second-order statistics is first developed, under the assumption that the additive noise is white
Gaussian process. From the observation of analytic results, a modification of the MFBLP method
with second-order statistics is suggested. From simulation results, it is shown that the MFBLP
methods with higher-order statistics is superior to the conventional MFBLP method with the linear
array data directly, in terms of threshold signal-to-noise ratio~SNR!. This is especially true when
data length becomes relatively larger. Moreover, the performance improvement of using the new
search algorithm together with all the MFBLPmethods is discussed thoroughly. ©1996 Acoustical
Society of America.

PACS numbers: 43.60.Gk

INTRODUCTION

Array processing deals with the methods for processing
the data of an array output to achieve a specific goal. In
general, two popular linear array structures, viz., the narrow-
band and broadband structures, are considered in practical
applications. The conventional approach of bearing estima-
tion for narrow-band source signals is to use the narrow-band
array structure. The implementation of the broadband array
structure for bearing estimation requires extra computation
time, but it may have better performance than the one using
the narrow-band array structure, even if the desired sources
are narrow-band signals. In the broadband array structure,
each sensor is realized by a tapped-delay line.1

To improve the performance of bearing estimation, re-
cently, the higher-order cumulants methods2–5 together with
the narrow-band array structure were suggested for suppress-
ing the additive Gaussian noise. The additive Gaussian noise
sources were assumed to be spatially correlated but are white
in temporal domain. To circumvent the problem due to the
spatially correlated Gaussian noise, Chiang and Nikias3 de-
veloped a fourth-order ESPRIT algorithm based on the gen-
eralized eigenstructure analysis. Porat and Friedlander4 pro-
posed a MUSIClike algorithm which is based on the
eigendecomposition of suitably defined matrix of the fourth-
order cumulants. Moreover, by using the asymptotic normal-
ity of cross-bispectrum estimate along with the maximum
likelihood theory, Forster and Nikias5 developed an algo-
rithm for bearing estimation.

It is well known that MUSIC,6 ESPRIT,7 and MFBLP8

methods are frequently employed on determining the inci-
dent angle~or bearing! of plant wave. It has been shown that,
in general, the ESPRIT method has computational

advantage,9 but the variance of bearing estimation error of
ESPRIT is larger than the one using the MUSIC10 method.
Moreover, in,11 Kesler and Shahmirian had shown that the
MFBLP method may have better capability in resolving two
full correlated source signals than the one using the MUSIC
method, in terms of bearing estimation.

In this paper, the MFBLP methods with higher-order
statistics, viz., the second-order statistics and the fourth-
order cumulants, are developed for bearing estimation using
the broadband array structure,12,13 where the desired source
signals are narrow band. The additive Gaussian noise sources
in the related sensors are assumed to be spatially correlated
and to be colored in temporal domain for each individual
sensor. Moreover, the signal-to-noise ratio~SNR! of interest
is assumed to be relatively small. The assumptions just de-
scribed are of interest in practical applications.

It is well known that the MFBLP method is an eigende-
composition approach, the dominant principal eigenvector/
eigenvalue pairs of the covariance matrix of the linear array
data are used for bearing estimation and are assumed to be
known in advance. In fact, the dominant principal
eigenvector/eigenvalue pairs are related to the number of de-
sired source signals thus are not available in practical appli-
cations. The number of source signals may be estimated by
using the existing criterion, e.g., finding the minimum of the
MDL function.14 In this paper, a simple new search algo-
rithm for extracting the principal eigenvalues is suggested
and the advantage is also discussed.

In the conventional array signal processing, the second-
order statistics of the received signal are used frequently. For
bearing estimation, they simply employed the signal- and
noise-subspace approaches along with the eigendecomposi-
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tion of the spatial covariance matrix of linear array data di-
rectly. However, in this paper, the approach of the MFBLP
method with second-order statistics, is referred to be as the
MFBLP-SOS method, is different from the one just de-
scribed. Here, the autocorrelation functions of linear array
data are viewed as an input of the spatial domain predictors.
In consequence, the MFBLP-SOS method for bearing esti-
mation can be formulated in the spatial domain to improve
the signal-to-noise ratio~SNR!.

To investigate the performance of the presented meth-
ods, an analytical study based on the second-order statistics
with additive white Gaussian noise is first developed. From
the analytical result, a modified MFBLP method with
second-order statistics will be proposed. Finally, the MFBLP
method with fourth-order cumulants is developed. Similarly,
we will refer the MFBLP-FOC method as the MFBLP
method with fourth-order cumulants. To have fair compari-
son, the bearing estimation results of the presented methods
are compared with the conventional MFBLP method using
the linear array data directly and the Crame´r–Rao lower
bound~CRLB!. Moreover, the performance improvement of
all methods via the new search algorithm for bearing estima-
tion is also emphasized.

I. THE USE OF SECOND-ORDER STATISTICS FOR
BEARING ESTIMATION

In this section, for bearing estimation the MFBLP
method based on the second-order statistics of linear array
data is first developed. Before that, the problem of bearing
estimation is briefly discussed.

A. Statement of bearing estimation

Consider an uniform linear array withM identical om-
nidirectional sensors spaced apart by a distanced. Each sen-
sor is realized by a tapped-delay line with tap weights, and
be summed together to estimate the signal received by the
reference sensor, e.g.,m0 ~m50! ormM21 (m5M21). The
received signalxm(k) of mth sensor atkth time instant with
noise can be expressed by

xm~k!5sm~k!1nm~k!,

for m50,1,...,M21, k51,2,...,N, ~1!

where the desired signal component received by themth sen-
sor,sm(k), may consist of multiple narrow-band source sig-
nals. The schematic diagram of spatial domain forward pre-
dictor is depicted in Fig. 1, where the forward prediction
error signalef(k), at thekth time instant, is given by

ef~k!5x0~k!2 (
m51

M21

(
l50

L21

am,lxm~k2 l !

for k5L,L11,...,N. ~2!

In ~2!, x0(k) is the signal received by the reference sensor,
them0 sensor, andN is the total length of received signal.
Also, am,l denote the tap weights of themth sensor,
m51,2,...,M21. Similarly, the backward predictor error
signal in spatial domain can be represented by

eb~k!5xM21~k2L11!2 (
m50

M22

(
l50

L21

bm,lxm~k2 l !

for k5L,L11,...,N, ~3!

wherexM21(k) is the signal received by the reference sen-
sor, themM21 sensor, andbm,l are thel th tap weight in the
delay line of themth sensor.

For convenience, the weight vectors,a andb, are desig-
nated by a5[a1,0 a1,1...a1,L21 a2,0...aM21,L21]

T and
b5[b0,0 b0,1...b0,L21 b1,0...bM22,L21]

T, respected. The op-
timum weight vectorsao andbo can be obtained by simply
minimizing E[(ef(k))

2] and E[(eb(k))
2],13 respectively.

This follows the derivation as in Ref. 15 which may also
show thatao5boB* , where superscript ‘‘B’’ denotes reversing
the sequence. This means that we may modify a backward
predictor into a forward predictor by reversing the sequence
in which its tap weights are positioned and also complex
conjugating them. Thus we may define the optimum weight
vector as

g5ao5boB* , ~4!

or the optimum weights,

gm,l5am,l
o 5bM2m21,L2 l21

o* ,

for m51,2,...,M21, l50,1,...,L21. ~5!

For bearing estimation, we simply apply the weight vector to
the following formula:16

G~ f c ,u!5
1

u12H~ f c ,u!u2
, ~6!

where

H~ f c ,u!5 (
m51

M21

(
l50

L21

gm,le
2 j ~2p l f c1mp sin u!. ~7!

Based on~6!, we can determine the incident angles asu5uk ,
for k51,2,...,K, at which the spatial spectrum,G( f c ,u), has
sharp peaks.

FIG. 1. A block diagram of spatial domain forward predictor.
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B. The MFBLP method with second-order statistics

To derive the MFBLP method based on the second-order
statistics of linear array data, first, we multiplyx0* (k 2 t) on
both sides of~2! and taking the expectation, after some ma-
nipulation, we have

E@x0~k!x0* ~k2t!#5EF (
m51

M21

(
l50

L21

am,lxm~k2 l !x0* ~k2t!G
1E@ef~k!x0* ~k2t!#,

for k5L,L11,...,N. ~8!

By the principle of orthogonality, the estimation erroref(k)
will be orthogonal to the input samples at timek, if am,l
reach the optimal weights,am,l

o , i.e.,

E@ef
o~k!x0* ~k2t!#50, for k5L,L11,...,N, ~9!

where ef
o(k) denotes the estimation error with the spatial

filter operating in its optimum condition. For convenience,
let us defineRxixj

(t) 5 E@xi(k)xj* (k 2 t)# to be the correla-
tion function betweenxi(k) andxj (k), such that~8! with the
optimal weights may be represented by

Rx0x0
~t!5 (

m51

M21

(
l50

L21

gm,lRxmx0
~t2 l !

for t5L2N,L2N11,...,N21. ~10!

Similarly, if we multiply xM21* (k 1 t) on ~3! and then
take expectations and complex conjugating and using the
fact thatE@eb

o(k)xM21* (k1 t)# 5 0, we have

RxM21xM21
* ~12t2L !5 (

m51

M21

(
l50

L21

gm,lRxM2m21xM21
*

3~12t2L1 l !

for t52N11,2N12,...,N2L,

~11!

for the backward predictor. It is noticed thateb
o(k) denotes

the estimation error with the filter operating in its optimum
condition. Based on Eqs.~10! and ~11!, the MFBLP-SOS
method can be developed.

The configuration of the spatial domain forward predic-
tor with second-order statistics of received signal described
in ~10! is depicted in Fig. 2. In Fig. 2, we can see that the
auto- and cross-correlation functions of the received signals
from sensors are first estimated. Then, we feed these corre-
lation functions into spatial domain tapped-delay line struc-
ture and solve the weight vector. If we compare Fig. 1 with
Fig. 2, we can find that in the MFBLP-SOS method,
Rxixj

(t) are used to instead ofxm(k) in the conventional
MFBLP method using the linear array data directly. The con-
figuration of the spatial domain backward predictor with
second-order statistics described in~11! is similar to the one
of the forward predictor. That is, in Fig. 2, the reference
sensorm0 ~n50! is replaced bymM21 (m5M21), in con-
sequence, theR̂xM21xM21

(t) is used to instead ofR̂x0x0
(t).

Similarly, theR̂xmx0
(t 2 l ) are replaced byR̂xM2m21xM21

* (1

2 t 2 L 1 l ), form51,2,...,M21, and so on.
To see how the MFBLP-SOS method can improve the

SNR over the conventional approach, the following discus-
sion will be useful. Theoretically, for white Gaussian noise,
the correlation functions will be

Rninj
~t!5H sn

2, t50 and i5 j ,

0, otherwise.
~12!

Thus only whent50 and i5 j , Rxixj
(t) will be affected by

the additive noise. Therefore, the use of the MFBLP method
with second-order statistics can expect to have better perfor-
mance over the conventional MFBLP method with linear ar-
ray data directly.

In the following, we would like to formulate the
MFBLP-SOS method for bearing estimation. In the MFBLP
methods with higher-order statistics, the accuracy of estimat-
ing different order statistics of signal is significant. In prac-
tice, when the lag,t, of correlation function becomes rela-
tively large, the estimation of correlation function,R̂xixj

(t),
due to insufficient data, will be inaccurate. Moreover, for
data length beingN and havingL tap weights in each sensor,
the total number of equations in~10! and ~11! will be 2N
2L. However, due to insufficient data available, as far as the
accuracy of the estimated correlation function is concerned,
only Q equations located at the medial of the 2N2L are
selected for further processing to have desired result. To sat-
isfy an overdetermined system, i.e., the number of equations
should be larger than unknowns, the range of 2Q, total num-
ber of equations, will be

~M21!L<2Q<2~2N2L !, ~13!

where (M21)L is the total number of tap weights in the
linear array. In practice, 2Q is chosen to be 1.6(M21)L
and, for convenience, we simply letL1Q be an even num-
ber, e.g.,S5(L1Q)/2.

To develop the MFBLP-SOS method for bearing estima-
tion, we may rewrite both Eqs.~10! and ~11! into a matrix
form

Ag5h ~14!

with

FIG. 2. A block diagram of spatial domain forward predictor with second-
order statistics.
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A5F F1 F2 ••• FM21

BM22 BM23 ••• B0
G
2Q3~M -1!L

, ~15!

g5@g1
T g2

T ••• gM21
T #T ~16!

and

h5F h0
hM21

G
2Q31

, ~17!

where the parameters in~15! and ~17! are defined in the
following:

Fm5F Rxmx0
~L2S! Rxmx0

~L212S! ••• Rxmx0
~12S!

Rxmx0
~L112S! Rxmx0

~L2S! ••• Rxmx0
~22S!

A A � A

Rxmx0
~S21! Rxmx0

~S22! ••• Rxmx0
~S2L !

G
Q3L

, ~18!

Bm5F RxmxM21
* ~S2L ! RxmxM21

* ~S2L11! ••• RxmxM21
* ~S21!

RxmxM21
* ~S2L-1! RxmxM21

* ~S2L ! ••• RxmxM21
* ~S22!

A A � A

RxmxM21
* ~12S! RxmxM21

* ~22S! ••• RxmxM21
* ~L2S!

G
Q3L

, ~19!

gm5@gm,0 gm,1 ••• gm,L21#
T, ~20!

and

hm5@Rxmxm
~L2S! Rxmxm

~L112S! ••• Rxmxm
~S21!#T. ~21!

To solve the equationAg5h via the so-called principal com-
ponent approach, the number of source signals is assumed to
be known in advance. However, this is not the case in the
practical application. In the next section, we will suggest a
new search algorithm for estimating and determining the
number of source signals.

C. Search algorithm for estimating the number of
source signals

For extracting the principal eigenvalues here, a new
search procedure is proposed. The solution ofg in ~14! using
the principal component approach can be expressed as

ĝ5(
i51

K S 1l i
DuiuiHAHh, ~22!

where the eigenvalues,li , of A
HA are arranged in the de-

creasing order andui are the corresponding eigenvectors. In
fact, ~22! can be viewed as a special case of solving~14! by
the singular value decomposition directly when no noise is
present, in which

l i50, for i5K11,K12,...,~M21!L. ~23!

It is noted that, here,li , for i5K11,...,(M21)L, cor-
responding to the mean-squared values of the difference be-
tweenRxixj

andRsisj
, and, for convenience, we refer to it as

the averaged error power and it is denoted assA
2. However, if

the noisy case is considered, ideally, the eigenvalues shown

in ~23! will equal to sA
2, instead of null. Thus theoretically,

the following relationship will hold:

@~M21!L2K#sA
25

1

2Q (
i5K11

~M21!L

l i . ~24!

In practice, the averaged error powersA
2 is not available, but

it can be estimated via adaptive filter shown in Fig. 3. Thus if
we feed the correlation functions,R̂xixj

(t), into the adaptive
filter, we may obtain the estimate of the averaged error
power from the filtered output, i.e.,ŝAi , j

2 5 E@ ê i j (t)#. From

~15!, we see that the matrixA contains different cross-
correlation functions described above. Such that, the estimate
of the averaged error power can be represented by

FIG. 3. The block diagram of adaptive filter for estimating the average error
power ŝA

2.
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ŝA
25

1

2~M21! S (
m51

M21

ŝAm,0
2 1 (

m50

M22

ŝAm,M21

2 D . ~25!

After obtainingŝA
2, the new search algorithm for estimating

the number of source signals can be developed. To see how it
works, we assume that two principal eigenvalues are to be
estimated. As can be seen from~24!, for K50, l1 andl2 @on
the right side of~24!# should correspond to the eigenvalues
of desired signal components plus extra error power terms.
On the other hand, the left-hand side of~24! will introduce
two moresA

2. However, in general,l1 andl2 are greater than
sA
2, such that the equality of~24! may not be hold and the

value on the left-hand side of~24! will be less than the value
on the right side. ForK51, the same situation will have
occurred. Now, forK52 ~since we assumed that we have
two principal eigenvalues!, ideally, both sides of~24! will
have the same value. As discussed earlier, sincesA

2 is not
available, we have to use the estimated value,ŝA

2 instead.
Thus in this situation~K52!, the left side of~24! may be
greater or less than the right side~and is undetermined!.
However, forK.2, in this case, the number of source signals
will be overestimated. We recalled that the eigenvalues are
arranged in the decreasing order andŝA

2 is a fixed value, thus
the values of the term on the right-hand side of~24! should
be decreased faster than the term on the left. So, we may
conclude that forK.2, the following inequality holds, i.e.,

@~M21!L2K̂#ŝA
2>

1

2Q (
i5K̂11

~M21!L

l i , ~26!

therefore, the minimum value ofK̂ which satisfied inequality
~26! can be viewed as the estimated number of source sig-
nals. From the above description, in general, more eigenval-
ues than the principal eigenvalues might be selected. The
accuracy and the advantage of using the presented search
algorithm to extract the principal eigenvalues will be exam-
ined in Sec. IV by computer simulations.

Again, for bearing estimation, we may simply apply the
weights obtained from the MFBLP-SOS method to~6! and
~7!. It is noticed that the entries of matrixA andh in Eqs.
~15! and ~17! are the correlation functions. Since under the
condition that the desired source signal and the noise signal
are uncorrelated with each other, the use of correlation func-
tions has the capability to reduce the effect due to the noise
signal. Moreover, if the noise signal is white or less corre-
lated, the use of the MFBLP-SOS method of linear array data
can expect to have better performance over the conventional
MFBLP method with linear array data directly. Based on this
observation, in next section, the modification of the MFBLP-
SOS method can be developed.

II. MSE OF THE CORRELATION ESTIMATOR AND
THE MODIFIED SECOND-ORDER METHOD

In practice, the correlation functionsRxixj
(t) are not

available, thus the estimators of correlation functions,
R̂xixj

(t), have to be used. Since the accuracy of the estimator
of the correlation function directly affects the performance of
bearing estimation. Recall that the received signal is com-

posed of the desired source and the noise components. Thus
we may define the mean-squared error~MSE! between the
estimators of correlation functions with respect to the re-
ceived signal and the desired source signal as the perfor-
mance index. Thus the MSE just described can be viewed as
an averaged noise power with respect to the desired correla-
tion function, R̂sisj

(t). In consequence, the analysis and

evaluation of the MSE betweenR̂xixj
(t) andR̂sisj

(t) will be
significant.

To derive the MSE between the estimators of correlation
functions with respect to the received signal and the desired
source signal, we assume the signal model is such thatK
narrow-band signals impinge on the linear array sensors with
center frequencyf c from directionsui and the distance be-
tween neighboring sensors is one-half of the wavelength.
The narrow-band signal received at themth sensor is given
by

sm~k!5(
i51

K

Aie
j ~2pk fc2mp sin u i1f i !, ~27!

whereAi andfi are the amplitude and initial phase of thei th
source signal, respectively. Moreover, for convenience, we
assume that the source signals are stationary and uncorre-
lated with the sensor noise,nm(k), which is assumed to be
white ~or colored! Gaussian random process with zero mean.

Now, if the MSE between the estimators of correlation
functions described above is defined asji , j ~t!, from the Ap-
pendix, we have

j i , j~t!5E@~R̂xixj
~t!2R̂sisj

~t!!2#,

5H sn
2

N
@Psi

1Psj
1sn

2#1sn
4, t50 and i5 j ,

sn
2

N2utu @Psi
1Psj

1sn
2#, otherwise,

~28!

wheresn
2 is the power of white Gaussian noises andPsm

is
defined as the averaged power of desired source signals re-
ceived at themth sensor.

Now, based on expression in~28!, an explicit expression
for the averaged MSE of the entries in matrixA can be
derived and may be viewed as the performance index of
bearing estimation. This is because that each block matrix of
A contains the elements ofRxixj

(t). To do so, apply~28! to
the entries of the matrixA, and define the averaged MSE of
the entries in matrixA to beEp :

Ep5
1

2Q

1

L

1

M21 H (
i51

M21

(
j50

Q21

(
k50

L21

@j i ,0~L2S1 j2k!

1jM21,M212 i~L2S1 j2k!#J . ~29!

Next, applying~28! to ~29!, we obtain
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Ep5
sn
2

2QL~M21! H (
i51

M21

(
j50

Q21

(
k50

L21 S Ps0
1PsM21

1Psi
1PsM212 i

12sn
2

N2uL2S1 j2ku D J
5

sn
2

2~M21! HM ~Ps0
1PsM21

!12~M21!sn
212 (

i51

M22

PsiJ Et , ~30!

where

Et5
1

QL (
j50

Q21

(
k50

L21 S 1

N2uL2S1 j2ku D55
1

QL
F L
N

12(
r51

Q2L
2 1

N2r
1 (

t51

L21 S t

N2S1t
D G , for Q>L

1

QL
FQ
N

12(
r51

L2Q
2 1

N2r
1 (

t51

Q21 S t

N2S1t
D G , for Q<L.

~31!

Using the result of~30!, Ep can be evaluated.
As can be seen from~14!, e.g., Ag5h, to solve the

weight vector the accuracy of the vectorh also affects the
performance of the proposed method. Therefore, it will be
necessary to investigate the averaged error of the correlation
estimators as we did for the matrixA. To do so, we similarly,
apply ~28! to the entries of vector in~17!, the averaged cor-
relation errors,Eph , correspond to vectorh and can also be
derived:

Eph5
1

2Q H sn
2 (
i50

Q21 2Ps0
1sn

2

N2uL2S1 i u

1sn
2 (
i50

Q21 2PsM21
1sn

2

N2uL2S1 i u
12sn

4J
5

sn
2~Ps0

1PsM21
1sn

2!

Q (
i50

Q21
1

N2uL2S1 i u
1

sn
4

Q
.

~32!

In the following, we would like to see the relationship
between the length of the received signalN andEp . From
~31!, we see that the value ofEt is negligible when data
lengthN is unbounded. That isEp.0 whenN is relatively
large. But, under the same condition, from~32!, we have
Eph5sn

4/Q even ifN is infinitude. From~28!, we know that
the term,sn

4/Q, is introduced fromjm,m~0!. At this point, it is
interesting to point out that to improve the performance of
the the MFBLP-SOS method, we may suggest crossing out
the termsRxmxm

(0). This is equivalent to removing the equa-
tions with t50 in ~10! and t512L in ~11!, respectively.
That is, the MFBLP-SOS method can be modified to have
better performance when SNR is relatively low. In conse-
quence, the dimension of the matrixA is reduced to 2~Q21!-
by-L(M21) and accordingly the dimension ofh is 2~Q21!-
by-1. In this case, since it can be shown thatEp andEph will
approximate to zero when the length of received dataN be-
come very large. Thus we can expect that the modified ver-
sion of the MFBLP-SOS method may perform superior to
the one without crossing out the terms,Rxmxm

(0).

Now, when the length of received dataN become very
large, from~31!, we have

Et5
1

QL (
j50

Q21

(
k50

L21 S 1

N2uL2S1 j2ku D.
1

N
,

if N@uL2S1 j2ku. ~33!

Substitute~31! into ~33!, accordingly, we haveEp to be

Ep.
sn
2

N

1

2~M21! HM ~Ps0
1PsM21

!12~M21!sn
2

12 (
i51

M22

PsiJ . ~34!

Similarly, when the modified MFBLP-SOS method is em-
ployed andN becomes very large, we have the approximated
value ofEph :

Eph.
sn
2

N
~Ps0

1PsM21
1sn

2!, if N@uL2S1 i u. ~35!

It is interesting to note here that from~34! and~35!, we learn
that if sn

2/N is constant for the same array system, the values
of Ep andEph will be unchanged. That is, when data length
increases ten times, SNR will reduce 10 dB, and the perfor-
mance will be similar.

III. THE USE OF FOURTH-ORDER CUMULANTS FOR
BEARING ESTIMATION

As discussed in the previous section, theoretically, when
noises in the related sensors are white, Gaussian processes
and the data length of received signals are unbounded, the
result of bearing estimation using the modified MFBLP-SOS
method can be made without error. Unfortunately, for col-
ored Gaussian noises, the correlation functions of the entries
of the matrixA, will be affected by the colored noises sig-
nificantly. That is, the components respect to the correlation
functions of noises, may not be null, e.g.,Rninj

(t) Þ 0, for all
t. In consequence, the MSE of the correlation estimators,
ji , j ~t!, could not be ignored, even if data length is un-
bounded. In this situation, the MFBLP-SOS method may not
perform as well as in the case of white Gaussian noises. Thus
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the method with higher-order statistics~or cumulants! is re-
quired to further improve the resolution of bearing estima-
tion.

As addressed before, the advantage of using higher-
order statistics, e.g., fourth-order cumulants, arises from the
fact that if noises in the related sensors are Gaussian pro-
cesses, white or colored, then all the statistics of noise com-
ponents with an order higher than two will be identical to
zero.2 Therefore, the use of higher-order cumulants of re-
ceived signals can suppress the effect due to the noise com-
ponents, yields improvement in the SNR, accordingly.

To develop the MFBLP-FOC method, we may multiply
x0* (k 2 t)x0(k 2 t)x0* (k 2 t) on both sides of~2!, and after
taking the expectation, we get

E@x0~k!x0* ~k2t!x0~k2t!x0* ~k2t!#

5EF (
m51

M21

(
l50

L21

am,lxm~k2 l !x0* ~k2t!x0~k2t!x0* ~k2t!G
1E@ef~k!x0* ~k2t!x0~k2t!x0* ~k2t!#,

for k5L,L11,...,N. ~36!

For convenience to proceed, we define the fourth-order mo-
ment,Rxixj

(4) (t), by

Rxixj
~4! ~t !5E@xi~k!xj* ~k2t!xj~k2t!xj* ~k2t!#. ~37!

Under the assumption that the desired source components are
deterministic and the colored noises are circular complex
Gaussian processes17 the last term of~36! will be zero, pro-
vided that the filter is operating in its optimum condition. In
consequence, the weight coefficientsam,l of forward predic-
tor are equal to the optimal weightsgm,l . Similarly, the for-
ward predictor based on the fourth-order moment is given by

Rx0x0
~4! ~t !5 (

m51

M21

(
l50

L21

gm,lRxmx0
~4! ~t2 l !

for t5L2N,L2N11,...,N21. ~38!

Since by definition, the fourth-order cumulant,
Cxixj
(4) (t), can be written by

Cxixj
~4! ~t !5Rxixj

~4! ~t !22Rxixj
~t!Rxjxj

~0!2E@xi~k!xj~k

2t!#E@xj* ~k2t!xj* ~k2t!#. ~39!

Again, for circular complex Gaussian processes with zero
mean, the last term on the right side of~39! can be shown to

be zero.17 Recalled from the signal model in~27!, the signal
in the last term on~39! can be also shown to be zero, there-
fore, the fourth-order cumulants will reduce to

Cxixj
~4! ~t !5Rxixj

~4! ~t !22Rxixj
~t!Psj

. ~40!

Now, based on~38!, ~40!, and ~10!, the forward predictor
based on the fourth-order cumulants having the form similar
to ~38! can be developed. First, we multiply~10! by 2Ps0
and subtract it from~38! and after some manipulations, we
get

Cx0x0
~4! ~t !5 (

m51

M21

(
l50

L21

gm,lCxmx0
~4! ~t2 l !,

for t5L2N,L2N11,...,N21. ~41!

Follow a similar procedure, we have the backward pre-
dictor based on the fourth-order cumulants:

CxM21xM21

~4!* ~12t2L !

5 (
m51

M21

(
l50

L21

gm,lCxM2m21xM21

~4!* ~12t2L1 l !

t52N11,2N12,...,N2L. ~42!

From ~41! and ~42!, the MFBLP-FOC method for bearing
estimation can be similarly derived when the matrix form
expression is similar to the MFBLP-SOS method, but the
entries of the matrix in~18!, ~19!, and ~21! areCxixj

(4) (t) in-

stead ofRxixj
(t). Again, after using the principal component

approach and the search algorithm suggested earlier, finally,
we may obtain the weight vectorĝ which can be applied to
determine the incident angles.

In the MFBLP-FOC method, since the colored Gaussian
noises can be completely removed, no further processing, as
in the modified MFBLP-SOS method, is required. Therefore,
we can expect that the use of MFBLP-FOC method will have
better performance than the MFBLP methods with lower-
order statistics of received signals.

IV. COMPUTER SIMULATIONS

In this section, to document the advantage of the
MFBLP methods with higher-order statistics for bearing es-
timation, computer simulations are carried out. In the simu-
lation, we consider two narrow-band source signals burried
in additive Gaussian noise with incident angles ofu1 andu2.
The amplitudes of narrow-band sources are set to unity with

TABLE I. Theoretical and simulation errors~N5202,u155°, u2523°!.

SNR TheoreticalEp SimulationEp TheoreticalEph SimulationEph

25 dB 1.1507331021 1.1324331021 1.2580331021 1.3167531021

0 dB 2.5320431022 2.5554331022 2.8714931022 2.8488531022

5 dB 6.9001231023 6.8497431023 7.9737031023 7.5337431023

10 dB 2.0713231023 2.1309731023 2.4108331023 2.4309931023

15 dB 6.4394231024 6.4092831024 7.5130431024 7.5557931024

20 dB 2.0252431024 2.1029231024 2.3647631024 2.2859331024

25 dB 6.3933431025 6.3362331025 7.4669731025 7.4997031025

30 dB 2.0206531025 2.0949231025 2.3601531025 2.3338331025
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the digital normalized frequency being 0.3, where, the maxi-
mum digital normalized frequency is 0.5. The noises in all
sensors are assumed to be circular complex Gaussian pro-
cesses with zero mean and the variance to besn

2. Here, the
cases that the additive noise in both spatial and temporal
domains are white and the additive noise to be spatially cor-
related and colored in temporal domain are considered. For
convenience, the signal-to-noise ratio~SNR! is defined by
SNR510 log10~1/sn

2!. Moreover, ten sensors~M510! are
considered with each sensor of the linear array having four
tap weights~L54!. In consequence, 30 equations~Q530!
are selected in the simulation for the MFBLP method with
higher-order statistics.

A. The additive noise sources in both spatial and
temporal domains are white

As discussed in Sec. II, to evaluate the performance of
the MFBLP-SOS method, the average MSE of the entries in
matrix A and vectorh can be viewed as an performance
index for bearing estimation. First, we will verify the accu-
racy of the theoretical values ofEp and Eph . For conve-
nience, we assume that the incident angles of two narrow-
band sources areu155° and u2523° and the additive
Gaussian noise is white. The statistical values ofEp andEph

are evaluated by averaging 500 independent runs and the
length of received signal isN5202. The theoretical values of
Ep andEph are calculated based on the expression of~30!

FIG. 4. The MSE of the modified MFBLP-SOS and MFBLP-SOS methods.
Incident angleu153°, u2523°, N55031052SNR/10.

FIG. 5. The MSE of different order statistics methods and the CRLB with
white Gaussian noise forN564.

FIG. 6. Average number of estimated signals with white Gaussian noise for
N564.

FIG. 7. The MSE of different order statistics methods and the CRLB with
white Gaussian noise forN5256.

FIG. 8. The MSE of different order statistics methods and the CRLB with
white Gaussian noise forN51024.
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and ~32!, respectively, and the results are listed in Table I.
From Table I, we learn that the theoretical results agree quite
well with the simulation results.

Recall from~33!, when the length of received data be-
come very large, we have an approximated value ofEt.1/N.
In consequence, if we setN/sn

2 to be a constant, then for the
same array system with a different set of parameters, we will
have the same values ofEp andEph . Therefore, forN/sn

2

5 50A10, i.e., N550310~52SNR!/10, the results of the
MFBLP-SOS and the modified MFBLP-SOS methods for
bearing estimation are shown in Fig. 4 together with the
CRLB. From Fig. 4, we see that for SNR to be greater than
3 dB, the performance of bearing estimation for both meth-
ods is quite similar. The reason this can be easily seen from
~32! is that, in this situation, the value ofsn

4/Q @the last term
of the right side of~32!#, will be very small. However, this
term is the only difference between both MFBLP-SOS and
modified MFBLP-SOS methods. This is true, because for
relatively large SNR, the effect due to the noise is not sig-
nificant. On the other hand, for SNR to be less than 3 dB, the
modified MFBLP-SOS method is superior to the MFBLP-
SOS method. This is also true, because in this case, the value
of sn

4/Q will become larger when the SNR is decreased.
Therefore, to remove the terms ofRxmxm

(0) from ~15! and
~17! will result in having better performance. It is noticed
that in Fig. 4, under the same condition, from simulation
results we found that the CRLB will approximate to a con-
stant value. Moreover, for SNR to be relatively large both
methods will converge to CRLB.

Now, let us investigate the performance of MFBLP
method with different order statistics of received signals, in
terms of the MSE of bearing estimation results. Here, we
consider the case that the received signal consists of two
source signals burried in the additive white Gaussian noise
with incident angles, e.g.,u1514° andu2517°. The other
parameters of the linear array will be the same as before.

The curves of the MSE of bearing estimation results
versus SNR are shown in Fig. 5 together with the CRLB for
N564. In Fig. 5, where ‘‘MFBLP’’ stands for the result of
using the MFBLP method with linear array data directly and
‘‘MFBLP ~narrow!’’ denotes the results when the narrow-
band array structure is employed, we can see that the perfor-
mance of MFBLP with linear data directly using the narrow-
band array structure is degeneration. Moreover, from Fig. 5,
we learn that the MSE of the modified MFBLP-SOS and the
MFBLP-FOC methods are very close and the threshold SNR
occurs at about 15 dB. By the threshold SNR we mean that
the value of SNR at which the accuracy of the bearing esti-
mates begins to depart very rapidly from the CRLB as SNR
is lower. On the other hand, the threshold SNR of MFBLP
method with linear array data directly occurs at about 17 dB.
Thus the improvement of threshold SNR is about 2 dB.

FIG. 9. Average number of estimated signals with colored Gaussian noise
for N52048.

FIG. 10. The variance bearing estimation error for different order statistics methods with colored Gaussian noise.~a! Number of signals is known.~b! Number
of signals is estimated with search algorithm.

TABLE II. Threshold SNR improvement.

Date
length

Threshold SNR of
MFBLP method with
higher-order statistics

Threshold SNR of
MFBLP method with
received data directly

Threshold SNR
improvement

64 15 dB 17 dB 2 dB
128 11 dB 14 dB 3 dB
256 7 dB 12 dB 5 dB
512 6 dB 12 dB 6 dB
1024 4 dB 11 dB 7 dB
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Moreover, the average number of source signals esti-
mated by the search algorithm suggested in this paper is
given in Fig. 6. We learn that in Fig. 6, the number of source
signals being estimated is incorrect when SNR is lower. But
it can be estimated correctly when SNR is higher, this is also
true even if the SNR is slightly lower than the threshold
SNR. Therefore, in this situation, the new search algorithm
proposed in this paper may results in having the identical
performance as the one using the exact number of source
signals. Again, forN5256 andN51024, the MSE of bearing
estimation results are shown in Fig. 7 and Fig. 8, respec-
tively. The threshold SNR of both methods is listed in Table
II. From these results, we observed that when data lengthN
becomes larger, the threshold SNR can be further improved.

B. The additive noise sources are spatially correlated
and colored in temporal domain

Next, we would like to investigate the performance of
the MFBLP methods with the higher-order statistics when
the additive noise is spatially correlated and colored in tem-
poral domain. The additive colored Gaussian noise is gener-
ated by passing a circular complex white Gaussian process
through a second-order IIR filter, the transfer function of the
system is

H~z!5
1

122r ~cosV!z211r 2z22 . ~43!

That is, the additive noise sources,nm(k), which are spatially
correlated and colored in temporal domain can be generated
using the following equations:

um~k!52r 1~cosV1!um~k21!2r 1
2um~k22!1wm~k!,

for m50,1,...,M21, k51,2,...,N, ~44!

and

nm~k!52r 2~cosV2!nm21~k!2r 2
2nm22~k!1um~k!,

for m50,1,...,M21, k51,2,...,N, ~45!

wherewm(k) is a white Gaussian sequence in both spatial
and temporal domains and the coefficients are chosen to be
r 15r 250.95 andV15V250.25, respectively. Again, we
consider two source signals with incident angles, e.g.,
u1523° and u2527° and the data length is chosen to be
N52048.

The search algorithm is, again, employed in this case
and the results are shown in Fig. 9. Figures 10~a! and 11~a!
are the variance and bias of bearing estimation error when
the number of source signals is known exactly. On the other
hand, Figs. 10~b! and 11~b! are the results obtained via the
proposed search algorithm. In this case, due to the colored
noises, we found that the MFBLP method with the linear
array data directly could not work satisfactorily. Moreover,
the bias is larger compared with the MFBLP method with
higher-order statistics. From Fig. 9, we found that the num-
ber of signals so estimated via the new search algorithm is
greater than the exact number of source signals. As can be
seen from Fig. 10~a!, the MFBLP-FOC method performed
slightly better than the modified MFBLP-SOS method. How-
ever, from Fig. 10~b!, we see that the modified MFBLP-SOS
method outperformed the MFBLP-FOC method, when the
new search algorithm is employed in both methods. Al-
though the number of source signals is over estimated by the
search algorithm, from Figs. 10 and 11, we learn that all
methods via the new search algorithm may perform superior
to the methods using the exact number of source signals.

Since the implementation of the higher-order statistics
methods involve more computation time, it is of interest to

FIG. 11. The bias bearing estimation error for different order statistics methods with colored Gaussian noise~a! Number of signals is known.~b! Number of
signals is estimated with search algorithm.

TABLE III. The CPU time of different methods and data length~Unit:
second!.

Data length Conventional MFBLP Modified MFBLP-SOS MFBLP-FOC

64 2.703 3.741 3.948
128 3.520 4.233 5.810
256 5.376 5.271 9.328
512 9.030 7.142 17.283
1024 17.202 11.021 30.102
2048 34.689 19.250 60.457
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evaluate the computation effort of the higher-order statistics
MFBLP methods and compare it to the conventional MFBLP
method. This is addressed in the following. For convenience,
again, let us consider the case that the linear array has ten
sensors~M510!, with each sensor having four tap weights
~L54!. In consequence, 30 equations~Q530! are chosen for
higher-order statistics methods. Under the the same condi-
tion, correspondingly, the number of equations in the con-
ventional MFBLP method, will equal toN2L11.

Now, for different data length, we would like to see the
computational requirement, in terms of CPU time when
DECstation 5000/25 is executing, for implementing each in-
dividual method. The results are listed in Table III. From
Table III, forN larger~equal! than 256, we see that the use of
second-order statistics method has the least computation time
among all methods. This is because in this case the dimen-
sion of matrixA in the conventional MFBLP method will be
increased to be 2~N2L11!-by-L(M21).

From ~40!, it is clear that the computational requirement
of the MFBLP method with fourth-order cumulants will be
much larger than other methods for bearing estimation. But
the performance improvement is as much as the modified
MFBLP-SOS method when additive noise is white Gaussian
process. On the other hand, when the search algorithm is
employed and the background noises are colored, the modi-
fied MFBLP-SOS method has shown to have the least bias,
variance and computation time for larger data length~say
N>256!.

V. CONCLUDING REMARKS

In this paper, the MFBLP methods with higher-order
statistics have been developed for bearing estimation. The
advantage of the proposed methods are proved from the re-
sults of computer simulation.

The statistical properties, in terms of bias, variance and
the mean-squared value of bearing estimation error, were in-
vestigated and compared to the CRLB. From the simulation
results we found that if the Gaussian noises are white, all
methods can perform well when SNR is relatively large. The
threshold SNR improvement of MFBLP with higher-order
statistics is in the range of 2–7 dB, when the received data
lengths are changed from 64 to 1024. Under this circum-
stance, the performance of the modified MFBLP-SOS
method and MFBLP-FOC method is quite similar.

Next, if the background noise sources are spatially cor-
related and colored in temporal domain, the MFBLP method
with linear array data could not work properly even if the
noise power is relatively small. But, the modified MFBLP
method with higher-order statistics can still perform well
when SNR is lower. Moreover, all methods via the new
search algorithm outperformed the methods using the exact
number of source signals.

APPENDIX

In this Appendix, the MSE of both correlation estima-
tors,R̂xixj

(t) andR̂sisj
(t), will be derived. For white Gauss-

ian noise, the correlation function will be

Rninj
~t!5H sn

2, t50 and i5 j

0, otherwise.
~A1!

Moreover, the source signals are assumed to be uncorrelated
with the noises, i.e.,Rsinj

(t) 5 0. The MSE of both correla-

tion function estimators,R̂xixj
(t) and R̂sisj

(t), is defined as

j i , j~t!5E@~R̂xixj
~t!2R̂sisj

~t!!2#

5E@~R̂sinj
~t!1R̂sjni

~t!1R̂ninj
~t!!2#, ~A2!

and can be expanded as

j i , j~t!5E@R̂sinj
~t!R̂sinj

* ~t!#1E@R̂sinj
~t!R̂nisj

* ~t!#

1E@R̂sinj
~t!R̂ninj

* ~t!#1E@R̂nisj
~t!R̂sinj

* ~t!#

1E@R̂nisj
~t!R̂nisj

* ~t!#1E@R̂nisj
~t!R̂ninj

* ~t!#

1E@R̂ninj
~t!R̂sinj

* ~t!#1E@R̂ninj
~t!R̂nisj

* ~t!#

1E@R̂ninj
~t!R̂ninj

* ~t!#. ~A3!

From ~A2!, we see thatji , j ~t! can be viewed as the error
power with respect to the desired correlation function,
R̂sisj

(t). Since the ensemble average of two correlation esti-
mators,R̂i j ~t1! and R̂kl~t2!, can be shown18

E@R̂i j ~t!R̂kl* ~t!#5
1

~N2utu!2 (
r52~N2t21!

N2t21

~N2t2ur u!

3$Ri j ~t!Rkl* ~t!1R̄il ~r1t!R̄jk* ~r

2t!1Rik~r !Rjl* ~r !1cum~r ,t,t!,

~A4!

where cum~r ,t,t! is the fourth-order joint cumulants. Thus
applying ~A4! into ~A3!, and recognizing that the term
cum~r ,t,t! in ~A4! is identical to zero,2 the first term on the
right side of~A3! is

E@R̂sinj
~t!R̂sinj

* ~t!#5
1

N2utu
sn
2Psi

, ~A5!

wherePsi
denotes the signal power. Similarly, the 5th term,

E@R̂nisj
(t)R̂nisj

* (t)#, can be expressed as@~12utu!/N]sn
2Psj

,

and the last term on the right side of~A3! is easily shown to
be

E@R̂ninj
~t!R̂ninj

* ~t!#5H S 11
1

NDsn
4, t50 and i5 j ,

1

N2utu
sn
4, otherwise.

~A6!

Moreover, the 2nd and the 4th terms on the right side of~A3!
~for complex random processes! are shown to be zero.~Note,
the 2nd and the 4th terms are shown to be@(N 2 u2tu)/(N
2 utu)2#Rsisi

(2t) and@(N 2 u2tu)/(N 2 utu)2#Rsjsj
(2t), re-

spected, when the signals are real valued andN.2utu.! Fur-
thermore, the other terms left on the right side of~A3! are
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equal to zero, provided that the desired signal and the noise
are uncorrelated with each other.

Now by substituting~A5! and ~A6! into ~A2!, the MSE
of correlation estimators can be computed by the following
expression

j i , j~t!55
sn
2

N
@Psi

1Psj
1sn

2#1sn
4, t50 and i5 j ,

sn
2

N2utu @Psi
1Psj

1sn
2#, otherwise.

~A7!
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