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The modified forward—backward linear predici®iFBLP) methods with higher-order statistics,

viz., the second-order statistics and the fourth-order cumulants, together with the broadband array
structure are developed in this paper for bearing estimation. Here, the desired source signals of
interest are narrow band and the additive Gaussian noise sources in the related sensors are assumed
to be spatially correlated or uncorrelated with each other and white/colored processes in the
temporal domain. In this paper, the MFBLP method with second-order statistics for bearing
estimation will be emphasized. Moreover, to extract the principal eigenvalues of presented MFBLP
methods a new search algorithm is also proposed. An analytical study of the MFBLP method with
second-order statistics is first developed, under the assumption that the additive noise is white
Gaussian process. From the observation of analytic results, a modification of the MFBLP method
with second-order statistics is suggested. From simulation results, it is shown that the MFBLP
methods with higher-order statistics is superior to the conventional MFBLP method with the linear
array data directly, in terms of threshold signal-to-noise ré@NR). This is especially true when

data length becomes relatively larger. Moreover, the performance improvement of using the new
search algorithm together with all the MFBLP methods is discussed thoroughy99& Acoustical
Society of America.

PACS numbers: 43.60.Gk

INTRODUCTION advantagé, but the variance of bearing estimation error of
_ . _ ESPRIT is larger than the one using the MUBl@ethod.

Array processing deals with the methods for processingyoreover, in'* Kesler and Shahmirian had shown that the

the data of an array output to achieve a specific goal. IfEg| p method may have better capability in resolving two

general, two popular linear array structures, viz., the narrows, | correlated source signals than the one using the MUSIC
band and broadband structures, are considered in praCtiCﬁ',ethod in terms of bearing estimation

a_lpplications. The conventiongl app_roach of bearing estima- In this paper, the MFBLP methods with higher-order
tion for narrow-band source signals is to use the narrow'bangtatistics, viz., the second-order statistics and the fourth-

array structure. The implementation of the broadband amay ger cumulants, are developed for bearing estimation using

structure _for bearing estimation requires extra computa‘ulor,[]he broadband array strucitfe!® where the desired source
time, but it may have better performance than the one usin

X : gignals are narrow band. The additive Gaussian noise sources
the narrow-band array structure, even if the desired sources )

. in the related sensors are assumed to be spatially correlated
are narrow-band signals. In the broadband array StrUCtur%ind to be colored in temporal domain for each individual
each sensor is realized by a tapped-delay line. P

To improve the performance of bearing estimation, re__sensor. Moreover, the signal-to-noise rNR) of interest

cently, the higher-order cumulants meth%)‘&siogether with 'S gssumed to.be relatjvely small. The' agsumptions just de-
the narrow-band array structure were suggested for suppre<ic/ioed are of interest in practical applications.

ing the additive Gaussian noise. The additive Gaussian noise 't IS Well known that the MFBLP method is an eigende-
sources were assumed to be spatially correlated but are whif@MPosition approach, the dominant principal eigenvector/
in temporal domain. To circumvent the problem due to thefigenvalue pairs of the_covarl_ance_ matrix of the linear array
spatially correlated Gaussian noise, Chiang and Nikits data are used for bearing estimation and are assumed to be
veloped a fourth-order ESPRIT algorithm based on the genknown in advance. In fact, the dominant principal
eralized eigenstructure analysis. Porat and Fried|4ruter eigenvector/eigenvalue pairs are related to the number of de-
posed a MUSICIlike algorithm which is based on the Sired source signals thus are not available in practical appli-
eigendecomposition of suitably defined matrix of the fourth-cations. The number of source signals may be estimated by
order cumulants. Moreover, by using the asymptotic normalusing the existing criterion, e.g., finding the minimum of the
ity of cross-bispectrum estimate along with the maximumMDL function.** In this paper, a simple new search algo-
likelihood theory, Forster and Nikiasdeveloped an algo- rithm for extracting the principal eigenvalues is suggested
rithm for bearing estimation. and the advantage is also discussed.

It is well known that MUSIC3 ESPRIT! and MFBLP In the conventional array signal processing, the second-
methods are frequently employed on determining the inciorder statistics of the received signal are used frequently. For
dent angldor bearing of plant wave. It has been shown that, bearing estimation, they simply employed the signal- and
in general, the ESPRIT method has computationahoise-subspace approaches along with the eigendecomposi-
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tion of the spatial covariance matrix of linear array data di-
rectly. However, in this paper, the approach of the MFBLP

; R oo k)
method with second-order statistics, is referred to be as the % xk) ,®_e£
m,

MFBLP-SOS method, is different from the one just de-
scribed. Here, the autocorrelation functions of linear array
data are viewed as an input of the spatial domain predictors.
In consequence, the MFBLP-SOS method for bearing esti- m,
mation can be formulated in the spatial domain to improve
the signal-to-noise ratiéSNR).

To investigate the performance of the presented meth-
ods, an analytical study based on the second-order statistics My
with additive white Gaussian noise is first developed. From
the analytical result, a modified MFBLP method with
second-order statistics will be proposed. Finally, the MFBLP FIG. 1. A block diagram of spatial domain forward predictor.
method with fourth-order cumulants is developed. Similarly,

dsin(0)

we will refer the MFBLP-FOC method as the MFBLP PR
method with fourth-order cumulants. To have fair compari-

. L ep(K)=Xp_1(k—L+1)— By 1 Xm(k—1
son, the bearing estimation results of the presented methods (k) =X ) mZ‘O .ZB mXm(k=1)

are compared with the conventional MFBLP method using
the linear array data directly and the CramRao lower
bound(CRLB). Moreover, the performance improvement of

all methods via the new search algorithm for bearing estima’hereéxy-1(k) is the signal received by the reference sen-
tion is also emphasized. sor, themy,_, sensor, and,, are thelth tap weight in the

delay line of themth sensor.
For convenience, the weight vectossandb, are desig-
nated by a=[a;, @;5...8;,_ 1 @pp..Ay_1.-1]' and
|. THE USE OF SECOND-ORDER STATISTICS FOR iapriing é B S Seaa (S (j] The ob-
BEARING ESTIMATION (o0 Bo,1..-Dor -1 By D51 -], respected. The op
timum weight vectorss® andb® can be obtained by simply
P 2 21 13 ;
In this section, for bearing estimation the MFBLP Minimizing E[(e:(k))7] and E[(ey(k))7],™ respectively.

method based on the second-order statistics of linear arral/iS follows the derivation as in Ref. 15 which may also

_ OB 4B :
data is first developed. Before that, the problem of bearingnOW thaia®=b°"*, where superscript™ denotes reversing
estimation is briefly discussed. he sequence. This means that we may modify a backward

predictor into a forward predictor by reversing the sequence

A. Statement of bearing estimation in which its tap weights are positioned and also complex

Consider an uniform linear array withl identical om- ~ conjugating them. Thus we may define the optimum weight
nidirectional sensors spaced apart by a distahdeach sen- Vector as
sor is realized by a tapped-delay line with tap weights, and
be summed together to estimate the signal received by the 9= a’=b%, (4)
reference sensor, e.gn, (m=0) or my,_; (m=M—1). The
received signak,,(k) of mth sensor akth time instant with ~ or the optimum weights,
noise can be expressed by

— 10 _|Ox%
Xm(k):Sm(k)+nm(k), gm,l_am,l bM—m—l,L—I—l!
for m=01,..M—1, k=12,.. N, 1) for m=1,2,...M—-1, 1=0,1,... -1 (5)
where the desired signal component received bymtiesen-  For bearing estimation, we simply apply the weight vector to
sor, s,,(k), may consist of multiple narrow-band source sig-the following formula®®

nals. The schematic diagram of spatial domain forward pre-
dictor is depicted in Fig. 1, where the forward prediction

for k=L,L+1,...N, 3

error signale¢(k), at thekth time instant, is given by G(fc,0)= T=H(f.. O] (6)
(o8]
M-11L1L-1
er(k)=xg(k) = 2, 2 amXm(k—1) where
m= =
for k=L,L+1,...N. ) Ml 4 .
. . . H(fc,0)= E 2 gmle—](Zwac+m7-rS|n0)_ (7)

In (2), xo(Kk) is the signal received by the reference sensor, m=1 =0 "

the my sensor, andN is the total length of received signal.

Also, a,, denote the tap weights of thenth sensor, Based on(6), we can determine the incident anglesfass, ,
m=1,2,...M—1. Similarly, the backward predictor error fork=1,2,...K, at which the spatial spectru®(f.,#), has
signal in spatial domain can be represented by sharp peaks.
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B. The MFBLP method with second-order statistics
To derive the MFBLP method based on the second—ordeN x#)_[Auto-

statistics of linear array data, first, we multipl§f(k — 7) on % correlation
ml

both sides 0f2) and taking the expectation, after some ma- x,(k) c
nipulation, we have dsin(8) 3] conelation
MZ1L-1 RGN Cross-
E[Xo(k)x3 (k—7)]=E| >, IZ am Xm(k—1)x& (k= 17) correlation
m=1 [=0 .
+E[e;(k)xg (k—1)], 1y s ()
M > Cross-
for k=L,L+1,...N. (8) correlation

BY the prlnC|pIe of Orthqunahty’ the estlmathn erm(k) FIG. 2. A block diagram of spatial domain forward predictor with second-
will be orthogonal to the input samples at tirke if a, order statistics.

reach the optimal weightsy, |, i.e.,

E[e2(k)x% (k—7)]=0, for k=L,L+1,...N, (9  Similarly, theR, , (7 — I) are replaced bR} - (1
—7—L+I),form=1.2,...M—1,andsoon.

To see how the MFBLP-SOS method can improve the

m-1XM-1
where ef(k) denotes the estimation error with the spatial

filter operating in its optimum condition. For convenlence,SNR over the conventional approach, the following discus-

i - A *(k — -
l_et us dEﬂ_nERXin(T) = Elxi(k)xj (k = 7)] to be the (.:orrela sion will be useful. Theoretically, for white Gaussian noise,
tion function betweerx; (k) andx;(k), such tha(8) with the  ihe correlation functions will be

optimal weights may be represented by
N R (1= o2, 7=0 andi=j, 1
nin- .
Rygr(7) = 2_ 2 IRy (7= 1) ! 0, otherwise.
m=1 120 Thus only whenr=0 andi=j, Ry, (7) will be affected by
for 7=L—N,L—-N+1,...N—-1. (100 the additive noise. Therefore, the use of the MFBLP method
with second-order statistics can expect to have better perfor-

Similarly, if we multiply Xy _,(k + 7) on (3) and then . o over the conventional MFBLP method with linear ar-

take expectations and complex conjugating and using th?ay data directly

fact thatE[ e(k)xy -1 (k + 7)] = 0, we have In the following, we would like to formulate the
M-1L-1 MFBLP-SOS method for bearing estimation. In the MFBLP
R, (1=7=L)=2 > gmiR} X methods with higher-order statistics, the accuracy of estimat-
M-1IM -1 m=1 =0 ~ " “MmmoITMoL ing different order statistics of signal is significant. In prac-
tice, when the lagy, of correlation function becomes rela-
tively large, the estimation of correlation functidﬁxixj(r),

for 7=—=N+1-N+2,...N-L, due to insufficient data, will be inaccurate. Moreover, for
(12) data length beingl and having.- tap weights in each sensor,
the total number of equations i10) and (11) will be 2N

for the backward predictor. It is noticed thef(k) denotes — | However, due to insufficient data available, as far as the
the estimation error with the filter operating in its optimum accuracy of the estimated correlation function is concerned,
condition. Based on Egqg10) and (11), the MFBLP-SOS  only Q equations located at the medial of th&l2L are
method can be developed. selected for further processing to have desired result. To sat-

The configuration of the spatial domain forward predic-isfy an overdetermined system, i.e., the number of equations
tor with second-order statistics of received signal describedhould be larger than unknowns, the range ©f 2otal num-
in (10) is depicted in Fig. 2. In Fig. 2, we can see that theper of equations, will be
auto- and cross-correlation functions of the received signals
from sensors are first estimated. Then, we feed these corre- (M—-1)L<2Q=2(2N-L), (13)
lation functions into spatial domain tapped-delay line strucyyhere (M — 1)L is the total number of tap weights in the
ture and solve the weight vector. If we compare Fig. 1 withjinear array. In practice, @ is chosen to be 1.6(— 1)L
Fig. 2, we can find that in the MFBLP-SOS method, and, for convenience, we simply let- Q be an even num-
inxj(r) are used to instead of,(k) in the conventional per, e.g.S=(L+Q)/2.
MFBLP method using the linear array data directly. The con-  To develop the MFBLP-SOS method for bearing estima-
figuration of the spatial domain backward predictor withtion, we may rewrite both Eq€10) and (11) into a matrix
second-order statistics described1d) is similar to the one form
of the forward predictor. That is, in Fig. 2, the reference Ag=h (14
sensom, (n=0) is replaced byny_, (m=M—1), in con- 9
sequence, th® 7) is used to instead dRXOXO(T). with

X(1—7—L+1)

XM—lxM—l(

2200 J. Acoust. Soc. Am., Vol. 99, No. 4, Pt. 1, April 1996 C.-Y. Sung and S.-J. Chern: Performance of bearing estimation 2200



F F, - Fyu h
A=l b P e NG h=|, ° , (17)
BM—2 BM—3 cee BO 20%(M-1)L M—-1 20x1
AT T T T
9=la o Ou-1] (16) where the parameters il5) and (17) are defined in the
and following:
) Rxmxo(l-_s) Rxmxo(l—_l_s) Rxmxo(l_s)
Rxmxo( L+1- S) Rxmxo( L— S) te Rxmxo( 2— S)
Fm= . . ) . : (18)
Rxmxo(s_l) Rxmxo(s_z) Rxmxo(s_l—) oxL
i ij (S-L) R, (S-L+1) - R:. (S-1)
* _ * —
T a9
* J—
X mXM — 1(1 S) RXmXM—l(2 S X m*M — 1(L S) oxL
gm:[gm,o Om1 gm,Lfl]Ta (20)
and
hm=[ Rxmxm( L-S) Rxmxm( L+1-95 - Rxmxm(s_ 1)]T- (21)

To solve the equatioAg=h via the so-called principal com- in (23) will equal to o4, instead of null. Thus theoretically,
ponent approach, the number of source signals is assumedttre following relationship will hold:

be known in advance. However, this is not the case in the
practical application. In the next section, we will suggest a )
new search algorithm for estimating and determining the [(M_l)L_K]‘TA:ﬁ i:;“ Ai-
number of source signals.

(M—1)L
(24)

In practice, the averaged error powsq is not available, but

it can be estimated via adaptive filter shown in Fig. 3. Thus if
C. Search algorithm for estimating the number of we feed the correlation functiong, (7), into the adaptive
source signals filter, we may obtain the estimate of the averaged error

For extracting the principal eigenvalues here, a newPOWer from the filtered output, 'eC’A = E[&;(7)]. From

search procedure is proposed. The solutiog iof (14) using (15, we see that the matris contains different cross-
the principa| component approach can be expressed as correlation functions described above. Such that, the estimate

of the averaged error power can be represented by

)uuHAHh (22)

where the eigenvalues, , of A"A are arranged in the de- )
creasing order and; are the corresponding eigenvectors. In J®)
fact, (22) can be viewed as a special case of solvibg) by mput signal
the singular value decomposition directly when no noise is
present, in which

\i=0, fori=K+1K+2,...(M—=1)L. (23
It is noted that, herey;, fori=K+1,...,(M—1)L, cor-

responding to the mean-squared values of the difference be-

tvveenRXX and Rss , and, for convenience, we refer to it as

the averaged error power and itis denotedré.sHowever if FIG. 3. The block diagram of adaptive filter for estimating the average error
the noisy case is considered, ideally, the eigenvalues showgawer 3.
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1 M-1 M-2 posed of the desired source and the noise components. Thus
&izm > oh +22 ah . (25  we may define the mean-squared erf®ISE) between the

( ) =1 ©om=0 ' estimators of correlation functions with respect to the re-
After obtainingo4, the new search algorithm for estimating ceived signal and the desired source signal as the perfor-
the number of source signals can be developed. To see howritance index. Thus the MSE just described can be viewed as
works, we assume that two principal eigenvalues are to ban averaged noise power with respect to the desired correla-
estimated. As can be seen fr@@4), for K=0, \; andA, [on  tion function, Rsisj(r). In consequence, the analysis and
the right side of(24)] should correspond to the eigenvalues eyajuation of the MSE betwedR, , () andRs s () will be
of desired signal components plus extra error power termssignificant. o H
On the other hand, the left-hand side (@#) will introduce
two moreo4. However, in general; and\, are greater than
a4, such that the equality d24) may not be hold and the

To derive the MSE between the estimators of correlation
functions with respect to the received signal and the desired
) . source signal, we assume the signal model is such Khat
vaIuE on.tf;]e Ieft-hand S'Ee @ﬁ) will be Ie_ss than thﬁl vr?lue narrow-band signals impinge on the linear array sensors with
on the right S'd?' FS'K_l_’ the same S|tuat|0rr]1 wi 2\/6 center frequency. from directionsé and the distance be-
occurred. Now, forK =2 (since we assumed that we have y een neighboring sensors is one-half of the wavelength.

two principal eigenvalugs ideally, both sides of24) will 10 harrow-band signal received at tmth sensor is given
have the same value. As discussed earlier, siffcés not

available, we have to use the estimated valiig,instead. by

Thus in this situationK=2), the left side of(24) may be K

greater or less than the right sidand is undetermined s (k)=2 A gl (2mkfe—mm sin 6+ ;) (27)
However, forK >2, in this case, the number of source signals m = '

will be overestimated. We recalled that the eigenvalues are

arranged in the decreasing order arfis a fixed value, thus whereA; and¢; are the amplitude and initial phase of itk

the values of the term on the right-hand side(@4) should  source signal, respectively. Moreover, for convenience, we

be decreased faster than the term on the left. So, we mayssume that the source signals are stationary and uncorre-

conclude that foik>2, the following inequality holds, i.e., lated with the sensor noise,,(k), which is assumed to be
white (or colored Gaussian random process with zero mean.

(M—1)L Now, if the MSE between the estimators of correlation
[(M=1)L-K]a2=-= > A, (26)  functions described above is definedéas(7), from the Ap-
2Q 5 pendix, we have

therefore, the minimum value & which satisfied inequality . .
(26) can be viewed as the estimated number of source sigﬁi,j(T)=E[(inxj(T)—Rsisj(T))z],
nals. From the above description, in general, more eigenval- 5
ues than the principal eigenvalues might be selected. The Tn
accuracy and the advantage of using the presented search N
algorithm to extract the principal eigenvalues will be exam- oﬁ ) )
ined in Sec. IV by computer simulations. N—[ [Ps+Ps+op],  otherwise,

Again, for bearing estimation, we may simply apply the
weights obtained from the MFBLP-SOS method(6 and (28)
(7). It is noticed that the entries of matrik andh in Egs.
(15) and (17) are the correlation functions. Since under thewhereo? is the power of white Gaussian noises dnd is
condition that the desired source signal and the noise sign&lefined as the averaged power of desired source signals re-
are uncorrelated with each other, the use of correlation funcseived at themth sensor.
tions has the capability to reduce the effect due to the noise Now, based on expression (B8), an explicit expression
signal. Moreover, if the noise signal is white or less corre-for the averaged MSE of the entries in matx can be
lated, the use of the MFBLP-SOS method of linear array datalerived and may be viewed as the performance index of
can expect to have better performance over the conventionbkaring estimation. This is because that each block matrix of
MFBLP method with linear array data directly. Based on thisA contains the elements &, (7). To do so, apply(28) to
observation, in next section, the modification of the MFBLP-the entries of the matriA, and define the averaged MSE of

[Psi+st+aﬁ]+a;‘, =0 andi=j,

SOS method can be developed. the entries in matriXA to beE:

Il. MSE OF THE CORRELATION ESTIMATOR AND 11 1 ([MotQoti-l

THE MODIFIED SECOND-ORDER METHOD Ep=n~— 1 > 2 2 [&oL—S+j—k)
2Q0LM—-1 | =1 =0 =0 7

In practice, the correlation functiorﬁxixj(r) are not
available, thus the estimators of correlation functions,
inxj(r), have to be used. Since the accuracy of the estimator

of the correlation function directly affects the performance of
bearing estimation. Recall that the received signal is comNext, applying(28) to (29), we obtain

+§M—1,M—1—i(|-_s+j—k)]]- (29

2202 J. Acoust. Soc. Am., Vol. 99, No. 4, Pt. 1, April 1996 C.-Y. Sung and S.-J. Chern: Performance of bearing estimation 2202



o (M +202
222

Ps,+Ps,_,+Ps+P

SM—1-i

)

Ep= 2QL(M 1) N—|L—S+j—K|
M-2
__Tn M(Pg +Ps, )+2(M—1)02+2 3, P (E (30)
2(M 1) SM71 n =4 S; t
where
QL L-1
- -
L i £+22 L+ t , for Q=L
1 1 QL _N =1 N—-r {1 \ N—-S+t
Q_Z Z ( N_|L— S+_J—k|> Lo o1 (3D
i 9 2 1 n t for Q=L
QL[N "1 N-r & \N=-S+t/ ]|’
|
Using the result 0f30), E,, can be evaluated. Now, when the length of received databecome very
As can be seen fronild), e.g., Ag=h, to solve the large, from(31), we have
weight vector the accuracy of the vectoralso affects the 0-11-1
performance of the proposed method. Therefore, it will be t:i 1 _ ):E
necessary to investigate the averaged error of the correlation QL %0 o IN—|L=S+j—k// N
estimators as we did for the matix To do so, we similarly, it N>|L—S+j—k|. (39

apply (28) to the entries of vector i(17), the averaged cor-
relation errorsk,;,, correspond to vectdn and can also be Substitute(31) into (33), accordingly, we hav&, to be

derived: 2
Ep—ﬁm M(P50+PSM—1)+2(M_1)U”
Q-1 2P, +0?
1 5 sg T On
Bon=2Q | 9% N-JL—S+1] S
=0 +22, Pst. (34)
Q-1 2P, 44?2 =
+oly — 420t Similarly, when the modified MFBLP-SOS method is em-
=0 N—|L—S+il ployed and\ becomes very large, we have the approximated
O-ﬁ(PSO+ PS + O.n) E— 1 O'ﬁ Value Oprh .
=0 N—|L—S+i ' T - -
Q | ] ((3 ) Epth”(PSOJrPSM_lJraﬁ), if N>|L—S+i|. (35
32

It is interesting to note here that fro(84) and(35), we learn
that if o2/N is constant for the same array system, the values
of E, andE, will be unchanged. That is, when data length
increases ten times, SNR will reduce 10 dB, and the perfor-
mance will be similar.

In the following, we would like to see the relationship
between the length of the received sighaland E,. From
(31, we see that the value &, is negligible when data
length N is unbounded. That i&,=0 whenN is relatively
large. But, under the same condition, frai32), we have
Epp=0 4/Q even ifN is infinitude. From(28), we know that
the term,g}/Q, is introduced fromt;, (0). At this point, it is
interesting to point out that to improve the performance of  As discussed in the previous section, theoretically, when
the the MFBLP-SOS method, we may suggest crossing outoises in the related sensors are white, Gaussian processes
the termsR, _, (0). This is equivalent to removing the equa- and the data length of received signals are unbounded, the
tions with =0 in (10) and 7=1—L in (11), respectively. result of bearing estimation using the modified MFBLP-SOS
That is, the MFBLP-SOS method can be modified to havenethod can be made without error. Unfortunately, for col-
better performance when SNR is relatively low. In conse-Ored Gaussian noises, the correlation functions of the entries
quence, the dimension of the matfxis reduced to @ —1)- of the matrixA, will be affected by the colored noises sig-
by-L(M — 1) and accordingly the dimension bfis 2(Q—1)- nificantly. That is, the components respect to the correlation
by-1. In this case, since it can be shown thgtandE,, will  functions of noises, may not be null, € By, (7) # 0, for all
approximate to zero when the length of received dtae- 7. In consequence, the MSE of the correlation estimators,
come very large. Thus we can expect that the modified verg ;(7), could not be ignored, even if data length is un-
sion of the MFBLP-SOS method may perform superior tobounded. In this situation, the MFBLP-SOS method may not
the one without crossing out the ternfig,  (0). perform as well as in the case of white Gaussian noises. Thus

lll. THE USE OF FOURTH-ORDER CUMULANTS FOR
BEARING ESTIMATION

2203 J. Acoust. Soc. Am., Vol. 99, No. 4, Pt. 1, April 1996 C.-Y. Sung and S.-J. Chern: Performance of bearing estimation 2203



the method with higher-order statistiosr cumulantsis re-  be zerat’ Recalled from the signal model i27), the signal
quired to further improve the resolution of bearing estima-in the last term or{39) can be also shown to be zero, there-
tion. fore, the fourth-order cumulants will reduce to

As addressed before, the advantage of using higher- 4) [ \_ )
order statistics, e.g., fourth-order cumulants, arises from the Cxixj(T)_ inxj(T) ZRXin(T) st' (40
fact that if noises in the related sensors are Gaussian pregow, based on(38), (40), and (10), the forward predictor
cesses, white or colored, then all the statistics of noise comyased on the fourth-order cumulants having the form similar

ponents with an order higher than two will be identical toto (38) can be developed. First, we multipit0) by 2P,

2 . ’ 0
Zero. Therefore, the use of higher-order cumulants_ of r®-and subtract it from(38) and after some manipulations, we
ceived signals can suppress the effect due to the noise cor’a-et
ponents, yields improvement in the SNR, accordingly.

To develop the MFBLP-FOC method, we may multiply @) @)
x5 (k — 7)xo(k — 7)x§ (k — 7) on both sides of2), and after Crxo( 1= mel ,ZO Im 1 G 77D
taking the expectation, we get

E[Xo(K)X5 (k= 7)Xo(k—7)Xg (k= 7)]

M—-1L-1

for 7=L—N,L—N+1,...N—1. (41)

Follow a similar procedure, we have the backward pre-

Mot dictor based on the fourth-order cumulants:
=E| 2 2 amXm(k=1)x§ (K= 7)xo(k—7)x5 (k—17)
m=1 (=0 ' C(4)* (1_7._|_)
XM-1XM -1
+E[es(K)xg (k— 7)Xo(k— 7)x5 (k—7)], M-1L-1
_ (4) o
for k=L,L+1,...N. (36) =2 2 gniCl e, (17T LED)
For convenience to proceed, we define the fourth-order mo- 7= —N+1-N+2. N—L. (42)

ment,R{) (1), by .
" From (41) and (42), the MFBLP-FOC method for bearing
Ri?)z_(T):E[Xi(k)Xik(k—T)Xj(k— 7x¥(k—=7)]. (37  estimation can be similarly derived when the matrix form
' _ . expression is similar to the MFBLP-SOS method, but the
Under t_h(_e e_lssumptlon that the deslred source components &iRries of the matrix in(18), (19), and(21) are C(X‘_‘Q_(r) in-
deterministic and the colored noises are circular comple>§tead ofR,, (7). Again, after using the principal chom onent
Gaussian procességhe last term o0f36) will be zero, pro- xp(7)- Again, ) 9 P P .p )
vided that the filter is operating in its optimum condition. In approach anq the search algonfhm §uggested earhgr, finally,
consequence, the weight coefficients, of forward predic- W€ May obtain the weight vectgrwhich can be applied to
tor are equal to the optimal weightg, , . Similarly, the for- determine the incident angles.

ward predictor based on the fourth-order moment is given by N theé MFBLP-FOC method, since the colored Gaussian
noises can be completely removed, no further processing, as

Mot in the modified MFBLP-SOS method, is required. Therefore,
Rk (M= 2 2 GmiR (7=1) i
X0Xo = ImIT g we can expect that the use of MFBLP-FOC method will have
better performance than the MFBLP methods with lower-
for 7=L—N,L—N+1,...N—1. (38)  order statistics of received signals.
Since by definition, the fourth-order cumulant,
Cifx)j(T)- can be written by IV. COMPUTER SIMULATIONS

In this section, to document the advantage of the
(4) —_p@4) _ _ . . !
CXiX;(T) RXiX;(T) ZRXin(T)RXij(O) Elxi(k)x;(k MFBLP methods with higher-order statistics for bearing es-
timation, computer simulations are carried out. In the simu-
—7)]E[xF (k—7)xF (k—7)]. X ’ . . .

DIEDX] (k=7 (k=7)] (39 lation, we consider two narrow-band source signals burried

Again, for circular complex Gaussian processes with zeran additive Gaussian noise with incident anglesgpfind 6,.
mean, the last term on the right side(88) can be shown to The amplitudes of narrow-band sources are set to unity with

TABLE I. Theoretical and simulation erro(®=202, 6,=5°, 6,=—3°).

SNR Theoreticak, SimulationE, TheoreticalEy, SimulationEp,
-5 dB 1.1507%10°* 1.13243<10°* 1.25803<10°* 1.31675¢<10°*
0 dB 2.53204&10°? 2.55543 102 2.8714%107°? 2.84885¢10 2
5 dB 6.9001%10°° 6.84974x10°° 7.97370x10°° 7.53374x10°°
10 dB 2.0713x10°3 2.1309%10°° 2.41083% 1073 2.43099%<10°°2
15 dB 6.4394%107* 6.40928<10°* 7.51304x10°* 7.55579% 1074
20 dB 2.0252%4107* 2.1029107* 2.36476<10°* 2.28593<10°*
25 dB 6.3933%107° 6.33623<10°° 7.4669710°° 7.49970<10°°
30 dB 2.02065%107° 2.09492%10°° 2.36015¢10°° 2.3338%10°°
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the digital normalized frequency being 0.3, where, the maxi-
mum digital normalized frequency is 0.5. The noises in all
sensors are assumed to be circular complex Gaussian pro-
cesses with zero mean and the variance tarheHere, the
cases that the additive noise in both spatial and temporal
domains are white and the additive noise to be spatially cor-
related and colored in temporal domain are considered. For
convenience, the signal-to-noise rati®NR) is defined by
SNR=10 log,((1/0%). Moreover, ten sensoréM=10) are
considered with each sensor of the linear array having four
tap weights(L=4). In consequence, 30 equatio(@=230)

are selected in the simulation for the MFBLP method with
higher-order statistics.

40

\

e

10Logyo(1/MSE)
20

A. The additive noise sources in both spatial and
temporal domains are white

10
T

As discussed in Sec. Il, to evaluate the performance of - il EFOC ‘ M?dmed i st
the MFBLP-SOS method, the average MSE of the entries in ° ° b SNR15(dB) * * ¥
matrix A and vectorh can be viewed as an performance
index for bearing estimation. First, we will verify the accu-
racy of the theoretical values d, and E,,. For conve-
nience, we assume that the incident angles of two narrow-
band sources are),=5° and #,=—3° and the additive
Gaussian noise is white. The statistical valuegpndE
are evaluated by averaging 500 independent runs and the
length of received signal Id=202. The theoretical values of
E, andE,;, are calculated based on the expressiorn3)

FIG. 7. The MSE of different order statistics methods and the CRLB with
white Gaussian noise fdd=256.
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TABLE II. Threshold SNR improvement.

OO PP
u®
Threshold SNR of ~ Threshold SNR of g
Date MFBLP method with MFBLP method with Threshold SNR %"m o
length  higher-order statistics received data directly improvement o &
Q 4
64 15 dB 17 dB 2 dB ok . Lo -
128 11 dB 14 dB 3dB E
256 7 dB 12 dB 5dB 1]
=) Modified MFBLP-—-SQS
1024 s o 118 78 5 ~
p-¥0C
5 o True W¥BY
Ee)
g
and (32), respectively, and the results are listed in Table I. Z ;
From Table I, we learn that the theoretical results agree quite -1o -5 0 S5NR (é%) 15 20 25

well with the simulation results.
Recall from(33), when the length of received data be- FiG. 9. Average number of estimated signals with colored Gaussian noise
come very large, we have an approximated valug;ef1/N.  for N=2048.
In consequence, if we s&l/ a2 to be a constant, then for the
same array system with a different set of parameters, we will ~ Now, let us investigate the performance of MFBLP
have the same values &, andE,. Therefore, forN/o?  method with different order statistics of received signals, in
= 50y10, ie., N=50x10°"S"R 0 the results of the terms of the MSE of bearing estimation results. Here, we
MFBLP-SOS and the modified MFBLP-SOS methods forconsider the case that the received signal consists of two
bearing estimation are shown in Fig. 4 together with thesource signals burried in the additive white Gaussian noise
CRLB. From Fig. 4, we see that for SNR to be greater thanyith incident angles, e.g.6;=14° and §,=17°. The other
3 dB, the performance of bearing estimation for both methparameters of the linear array will be the same as before.
ods is quite similar. The reason this can be easily seen from  The curves of the MSE of bearing estimation results
(32) is that, in this situation, the value ofy/Q [the last term  versus SNR are shown in Fig. 5 together with the CRLB for
of the right side 0f(32)], will be very small. However, this N=64. In Fig. 5, where “MFBLP” stands for the result of
term is the only difference between both MFBLP-SOS and,sing the MFBLP method with linear array data directly and
modified MFBLP-SOS methods. This is true, because forMFBLP (narrow)” denotes the results when the narrow-
relatively large SNR, the effect due to the noise is not sighand array structure is employed, we can see that the perfor-
nificant. On the other hand, for SNR to be less than 3 dB, thenance of MFBLP with linear data directly using the narrow-
modified MFBLP-SOS method is superior to the MFBLP- band array structure is degeneration. Moreover, from Fig. 5,
SOS method. This is also true, because in this case, the valyg |earn that the MSE of the modified MFBLP-SOS and the
of o/Q will become larger when the SNR is decreased.MFBLP-FOC methods are very close and the threshold SNR
Therefore, to remove the terms Bf , (0) from (15 and  occurs at about 15 dB. By the threshold SNR we mean that
(17 will result in having better performance. It is noticed the value of SNR at which the accuracy of the bearing esti-
that in Fig. 4, under the same condition, from simulationmates begins to depart very rapidly from the CRLB as SNR
results we found that the CRLB will approximate to a con-is lower. On the other hand, the threshold SNR of MFBLP
stant value. Moreover, for SNR to be relatively large bothmethod with linear array data directly occurs at about 17 dB.

methods will converge to CRLB. Thus the improvement of threshold SNR is about 2 dB.
8 — 8 ~
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5 B /
§g_ §97 ? SR
SN > 3
Z . o) < »
I3 W
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FIG. 10. The variance bearing estimation error for different order statistics methods with colored Gaussida)ridiseber of signals is knowrib) Number
of signals is estimated with search algorithm.
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Moreover, the average number of source signals estiThat is, the additive noise sources,(k), which are spatially
mated by the search algorithm suggested in this paper isorrelated and colored in temporal domain can be generated
given in Fig. 6. We learn that in Fig. 6, the number of sourceusing the following equations:
signals being estimated is incorrect when SNR is lower. But 2
it can be estimated correctly when SNR is higher, this is also Urn(K) =21 1(C0S L) Um(k=1) =1 um(k=2) +Wr(k),
true even if the SNR is slightly lower than the threshold for m=0,1,...M—1, k=1,2,...N, (44)
SNR. Therefore, in this situation, the new search algorithm
proposed in this paper may results in having the identicafnd
pgrformancg as the one using the exact number of SOUrce (k)= 2r,(cos Q) Npm_1(K) = r2nm_»(K) + Um(k),
signals. Again, foN=256 and\N=1024, the MSE of bearing
estimation results are shown in Fig. 7 and Fig. 8, respec- for m=0,1,...M—-1, k=1.2,...N, (45)

tively. The threshold SNR of both methods is listed in Tablewherewm(k) is a white Gaussian sequence in both spatial

Il. From these results, we observed that when data leNgth 54 temporal domains and the coefficients are chosen to be
becomes larger, the threshold SNR can be further |mproveq.1: r,=0.95 and 0,=0,=0.25, respectively. Again, we

consider two source signals with incident angles, e.g.,
0,=23° and 6,=27° and the data length is chosen to be
B. The additive noise sources are spatially correlated N=2048.
and colored in temporal domain The search algorithm is, again, employed in this case
and the results are shown in Fig. 9. Figuresal@nd 11a)

Next, we would like to investigate the performance of are the variance and bias of bearing estimation error when
the MFBLP methods with the higher-order statistics when 9

the additive noise is spatially correlated and colored in tem:[he number of source signals is known exactly. On the other

poral domain. The additive colored Gaussian noise is generhand’ Figs. 1(b) and 1¥b) are thg results obtained via the
roposed search algorithm. In this case, due to the colored

ated by passing a circular complex white Gaussian proceé%

through a second-order IIR filter, the transfer function of the'0IS€s, We f_ound that the MFBLP m_ethod W'th the linear
array data directly could not work satisfactorily. Moreover,

system is the bias is larger compared with the MFBLP method with
1 higher-order statistics. From Fig. 9, we found that the num-
H(z)= (43  ber of signals so estimated via the new search algorithm is

-1 2,—2" .
1-2r(cosQd)z "+rz greater than the exact number of source signals. As can be

seen from Fig. 1®&), the MFBLP-FOC method performed
TABLE IIl. The CPU time of different methods and data lengdtbnit: slightly better than the modified MFBLP-SOS method. How-
secondl ever, from Fig. 1(b), we see that the modified MFBLP-SOS
method outperformed the MFBLP-FOC method, when the
new search algorithm is employed in both methods. Al-

Data length Conventional MFBLP Modified MFBLP-SOS MFBLP-FOC

64 2.703 3.741 3.948 though the number of source signals is over estimated by the
128 3.520 4.233 5.810 search algorithm, from Figs. 10 and 11, we learn that all
256 5.376 5.271 9328 methods via the new search algorithm may perform superior
>12 9.030 7.142 17.283 to the methods using the exact humber of source signals.

1024 17.202 11.021 30.102

2048 34.689 19.250 60.457 Since the implementation of the higher-order statistics
methods involve more computation time, it is of interest to
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evaluate the computation effort of the higher-order statistics Uﬁ, =0 andi=j
MFBLP methods and compare it to the conventional MFBLP Rninj(T):
method. This is addressed in the following. For convenience,

again, let us consider the case that the linear array has teMioreover, the source signals are assumed to be uncorrelated
sensordM =10), with each sensor having four tap weights with the noises, i.eRgn (7) = 0. The MSE of both correla-

(L=4). In consequence, 30 equatici@=30) are chosen for 45 fnction esnmatorsRXX (7) and RSS (7), is defined as
higher-order statistics methods. Under the the same condi-

tlon,_correspondlngly, the ngmber of equations in the con- §i,j(7)=E[(Rx.x( ) — Rss(T)) ]
ventional MFBLP method, will equal tBl—L+1.

Now, for different data length, we would like to see the = E[(Rsn (r)+ R ( )+ Rn-n-(T))Z]a (A2)
computational requirement, in terms of CPU time when H
DECstation 5000/25 is executing, for implementing each in-and can be expanded as
dividual method. The results are listed in Table Ill. From
Table I, for N larger(equa) than 256, we see that the use of
second-order statistics method has the least computation time
among all methods. This is because in this case the dimen-
sion of matrixA in the conventional MFBLP method will be
increased to be(®l—L+1)-by-L(M—1).

Al
0, otherwise. (AL)

&,(1)=E[Rgn (DRE, (7)]+E[Rgn (DR (7]
+E[Rsingr)R:inj<r>]+E[ﬁenisjmﬁegnj(rn

+ E[Rnys (TR s (D] E[Ry s (DR 1. (7)]

From (40), it is clear that the computational requirement n E[fi () D% (T)]JFE[@ (T)FAQ* (0]
of the MFBLP method with fourth-order cumulants will be mn n mn Si
much larger than other methods for bearing estimation. But + E[ﬁ?n.n (7) “:n (n)]. (A3)

the performance improvement is as much as the modified

MFBLP-SOS method when additive noise is white GaussiarFrom (A2), we see that; (7 can be viewed as the error
process. On the other hand, when the search algorithm jsower with respect to the desired correlation function,
employed and the background noises are colored, the modg_ 55,(7)- Since the ensemble average of two correlation esti-
fied MFBLP-SOS method has shown to have the least b'a%ators R(r) and Rk|(Tz) can be show

variance and computation time for larger data lengthy

N=256). 1 N1

B[Ry (DRE(D]= g

— > (N=71—]r])
[)* =& 1)

V. CONCLUDING REMARKS X{Rij(T)R |(T)+Rl|(|’+T)R (r

In this paper, the MFBLP methods with higher-order
statistics have been developed for bearing estimation. The )+R'k(r)R (r)+cum(r,7,7),
advantage of the proposed methods are proved from the re- (A4)
sults of computer simulation.

The statistical properties, in terms of bias, variance an
the mean-squared value of bearing estimation error, were in
vestigated and compared to the CRLB. From the simulation
results we found that if the Gaussian noises are white, all
methods can perform well when SNR is relatively large. The . . 1
threshold SNR improvement of MFBLP with higher-order ~ E[Rsn,(T)Rg, (7)]= N=T7 TiPs.» (A5)
statistics is in the range of 2—7 dB, when the received data
lengths are changed from 64 to 1024. Under this circumwherePg denotes the signal power. Similarly, the 5th term,

stance, the performance of the modified MFBLP- SOSE[RnS(T)R 3(7')], can be expressed @(51—|7'|)/N]<Tn s

method and MFBLP-FOC method is quite similar. and the last term on the right side @3) is easily shown to
Next, if the background noise sources are spatially cory,

related and colored in temporal domain, the MFBLP method

dvhere cunfr,,7) is the fourth-order joint cumulants. Thus
applymg (A4) into (A3), and recognizing that the term

cum(r,7,7) in (A4) is identical to zerd,the first term on the
|rlght side of(A3) is

with linear array data could not work properly even if the 4 .
1+ —|o 7=0 andi=j,
noise power is relatively small. But, the modified MFBLP N/ n
method with higher-order statistics can still perform well E[Rnn (T)R min, (n]= 1
when SNR is lower. Moreover, all methods via the new =S4 otherwise.
Thn
search algorithm outperformed the methods using the exact =]
number of source signals. (A6)
Moreover, the 2nd and the 4th terms on the right sideAa
APPENDIX (for complex random procesgesre shown to be zerdNote,

the 2nd and the 4th terms are shown to[bd — |27|)/(N
In this Appendix, the MSE of both correlation estima- — |7-|)2]RSS(27) and[(N — |27])/(N — |r|)2]RSs (27), re-

tors, Rxx (7) andRg,(7), will be derived. For white Gauss-  spected, when the signals are real valued Iaacﬂ|1-| ) Fur-
ian n0|se the correlatlon function will be thermore, the other terms left on the right side(AB) are
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